提交 0f2ea291 作者: glide-the

调整项目结构,适配远程LLM调用生成问题。新增fastchat_openai_llm.py实现fastchat openai报文报文形式调用

上级 f5a85a19
......@@ -69,11 +69,11 @@ llm_model_dict = {
"local_model_path": None,
"provides": "LLamaLLM"
},
"fastChat": {
"name": "fastChat",
"pretrained_model_name": "fastChat",
"fastChatOpenAI": {
"name": "FastChatOpenAI",
"pretrained_model_name": "FastChatOpenAI",
"local_model_path": None,
"provides": "FastChatLLM"
"provides": "FastChatOpenAILLM"
}
}
......
from .chatglm_llm import ChatGLM
from .llama_llm import LLamaLLM
from .moss_llm import MOSSLLM
from .fastchat_llm import FastChatLLM
from .fastchat_openai_llm import FastChatOpenAILLM
......@@ -2,8 +2,12 @@ from models.base.base import (
AnswerResult,
BaseAnswer
)
from models.base.remote_rpc_model import (
RemoteRpcModel
)
__all__ = [
"AnswerResult",
"BaseAnswer",
"RemoteRpcModel",
]
from abc import ABC, abstractmethod
import torch
from models.base import (BaseAnswer,
AnswerResult)
class MultimodalAnswerResult(AnswerResult):
image: str = None
class LavisBlip2Multimodal(BaseAnswer, ABC):
@property
@abstractmethod
def _blip2_instruct(self) -> any:
"""Return _blip2_instruct of blip2."""
@property
@abstractmethod
def _image_blip2_vis_processors(self) -> dict:
"""Return _image_blip2_vis_processors of blip2 image processors."""
@abstractmethod
def set_image_path(self, image_path: str):
"""set set_image_path"""
from abc import ABC, abstractmethod
import torch
from models.base import (BaseAnswer,
AnswerResult)
class MultimodalAnswerResult(AnswerResult):
image: str = None
class RemoteRpcModel(BaseAnswer, ABC):
@property
@abstractmethod
def _api_key(self) -> str:
"""Return _api_key of client."""
@property
@abstractmethod
def _api_base_url(self) -> str:
"""Return _api_base of client host bash url."""
@abstractmethod
def set_api_key(self, api_key: str):
"""set set_api_key"""
@abstractmethod
def set_api_base_url(self, api_base_url: str):
"""set api_base_url"""
@abstractmethod
def call_model_name(self, model_name):
"""call model name of client"""
from abc import ABC
import requests
from typing import Optional, List
from langchain.llms.base import LLM
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
AnswerResult)
class FastChatLLM(BaseAnswer, LLM, ABC):
max_token: int = 10000
temperature: float = 0.01
top_p = 0.9
checkPoint: LoaderCheckPoint = None
# history = []
history_len: int = 10
def __init__(self, checkPoint: LoaderCheckPoint = None):
super().__init__()
self.checkPoint = checkPoint
@property
def _llm_type(self) -> str:
return "FastChat"
@property
def _check_point(self) -> LoaderCheckPoint:
return self.checkPoint
@property
def _history_len(self) -> int:
return self.history_len
def set_history_len(self, history_len: int = 10) -> None:
self.history_len = history_len
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
pass
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False):
response = "fastchat 响应结果"
history += [[prompt, response]]
answer_result = AnswerResult()
answer_result.history = history
answer_result.llm_output = {"answer": response}
yield answer_result
from abc import ABC
import requests
from typing import Optional, List
from langchain.llms.base import LLM
from models.loader import LoaderCheckPoint
from models.base import (RemoteRpcModel,
AnswerResult)
from typing import (
Collection,
Dict
)
def _build_message_template() -> Dict[str, str]:
"""
:return: 结构
"""
return {
"role": "",
"content": "",
}
class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
api_base_url: str = "http://localhost:8000/v1"
model_name: str = "chatglm-6b"
max_token: int = 10000
temperature: float = 0.01
top_p = 0.9
checkPoint: LoaderCheckPoint = None
history = []
history_len: int = 10
def __init__(self, checkPoint: LoaderCheckPoint = None):
super().__init__()
self.checkPoint = checkPoint
@property
def _llm_type(self) -> str:
return "FastChat"
@property
def _check_point(self) -> LoaderCheckPoint:
return self.checkPoint
@property
def _history_len(self) -> int:
return self.history_len
def set_history_len(self, history_len: int = 10) -> None:
self.history_len = history_len
@property
def _api_key(self) -> str:
pass
@property
def _api_base_url(self) -> str:
return self.api_base_url
def set_api_key(self, api_key: str):
pass
def set_api_base_url(self, api_base_url: str):
self.api_base_url = api_base_url
def call_model_name(self, model_name):
self.model_name = model_name
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
pass
# 将历史对话数组转换为文本格式
def build_message_list(self, query) -> Collection[Dict[str, str]]:
build_message_list: Collection[Dict[str, str]] = []
history = self.history[-self.history_len:] if self.history_len > 0 else []
for i, (old_query, response) in enumerate(history):
user_build_message = _build_message_template()
user_build_message['role'] = 'user'
user_build_message['content'] = old_query
system_build_message = _build_message_template()
system_build_message['role'] = 'system'
system_build_message['content'] = response
build_message_list.append(user_build_message)
build_message_list.append(system_build_message)
user_build_message = _build_message_template()
user_build_message['role'] = 'user'
user_build_message['content'] = query
build_message_list.append(user_build_message)
return build_message_list
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False):
try:
import openai
# Not support yet
openai.api_key = "EMPTY"
openai.api_base = self.api_base_url
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
# create a chat completion
completion = openai.ChatCompletion.create(
model=self.model_name,
messages=self.build_message_list(prompt)
)
self.history += [[prompt, completion.choices[0].message.content]]
answer_result = AnswerResult()
answer_result.history = self.history
answer_result.llm_output = {"answer": completion.choices[0].message.content}
yield answer_result
import sys
from typing import Any
from models.loader.args import parser
from models.loader import LoaderCheckPoint
from configs.model_config import (llm_model_dict, LLM_MODEL)
......@@ -8,7 +8,7 @@ from models.base import BaseAnswer
loaderCheckPoint: LoaderCheckPoint = None
def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_v2: bool = False) -> BaseAnswer:
def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_v2: bool = False) -> Any:
"""
init llm_model_ins LLM
:param llm_model: model_name
......@@ -34,7 +34,7 @@ def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_
loaderCheckPoint.model_path = llm_model_info["local_model_path"]
if 'fastChat' in loaderCheckPoint.model_name:
if 'FastChat' in loaderCheckPoint.model_name:
loaderCheckPoint.unload_model()
else:
loaderCheckPoint.reload_model()
......
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../')
import asyncio
from argparse import Namespace
from models.loader.args import parser
from models.loader import LoaderCheckPoint
import models.shared as shared
async def dispatch(args: Namespace):
args_dict = vars(args)
shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
llm_model_ins = shared.loaderLLM()
llm_model_ins.set_api_base_url("http://localhost:8000/v1")
llm_model_ins.call_model_name("chatglm-6b")
history = [
("which city is this?", "tokyo"),
("why?", "she's japanese"),
]
for answer_result in llm_model_ins.generatorAnswer(prompt="她在做什么? ", history=history,
streaming=False):
resp = answer_result.llm_output["answer"]
print(resp)
if __name__ == '__main__':
args = None
args = parser.parse_args(args=['--model-dir', '/media/checkpoint/', '--model', 'fastChatOpenAI', '--no-remote-model'])
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(dispatch(args))
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../')
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../')
import asyncio
from argparse import Namespace
from models.loader.args import parser
from models.loader import LoaderCheckPoint
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
import models.shared as shared
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论