提交 4150af00 作者: imClumsyPanda

merge master

...@@ -178,6 +178,6 @@ Web UI 可以实现如下功能: ...@@ -178,6 +178,6 @@ Web UI 可以实现如下功能:
- [ ] 实现调用 API 的 Web UI Demo - [ ] 实现调用 API 的 Web UI Demo
## 项目交流群 ## 项目交流群
![二维码](img/qr_code_11.jpg) ![二维码](img/qr_code_12.jpg)
🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。 🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
...@@ -170,24 +170,25 @@ async def delete_docs( ...@@ -170,24 +170,25 @@ async def delete_docs(
async def chat( async def chat(
knowledge_base_id: str = Body(..., description="知识库名字", example="kb1"), knowledge_base_id: str = Body(..., description="Knowledge Base Name", example="kb1"),
question: str = Body(..., description="问题", example="工伤保险是什么?"), question: str = Body(..., description="Question", example="工伤保险是什么?"),
history: List[List[str]] = Body( history: List[List[str]] = Body(
[], [],
description="问题及答案的历史记录", description="History of previous questions and answers",
example=[ example=[
[ [
"这里是问题,如:工伤保险是什么?", "工伤保险是什么?",
"答案:工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费,由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。", "工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费,由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。",
] ]
], ],
), ),
): ):
vs_path = os.path.join(VS_ROOT_PATH, knowledge_base_id) vs_path = os.path.join(VS_ROOT_PATH, knowledge_base_id)
resp = {} if not os.path.exists(vs_path):
if os.path.exists(vs_path) and knowledge_base_id: raise ValueError(f"Knowledge base {knowledge_base_id} not found")
for resp, history in local_doc_qa.get_knowledge_based_answer( for resp, history in local_doc_qa.get_knowledge_based_answer(
query=question, vs_path=vs_path, chat_history=history, streaming=False query=question, vs_path=vs_path, chat_history=history, streaming=True
): ):
pass pass
source_documents = [ source_documents = [
...@@ -195,11 +196,6 @@ async def chat( ...@@ -195,11 +196,6 @@ async def chat(
f"""相关度:{doc.metadata['score']}\n\n""" f"""相关度:{doc.metadata['score']}\n\n"""
for inum, doc in enumerate(resp["source_documents"]) for inum, doc in enumerate(resp["source_documents"])
] ]
else:
for resp_s, history in local_doc_qa.llm._call(prompt=question, history=history, streaming=False):
pass
resp["result"] = resp_s
source_documents =[("当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。")]
return ChatMessage( return ChatMessage(
question=question, question=question,
......
...@@ -3,17 +3,25 @@ import re ...@@ -3,17 +3,25 @@ import re
from typing import List from typing import List
from configs.model_config import SENTENCE_SIZE from configs.model_config import SENTENCE_SIZE
class ChineseTextSplitter(CharacterTextSplitter): class ChineseTextSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, **kwargs): def __init__(self, pdf: bool = False, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.pdf = pdf self.pdf = pdf
def split_text1(self, text: str) -> List[str]: def split_text1(self, text: str, use_document_segmentation: bool = False) -> List[str]:
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id
if self.pdf: if self.pdf:
text = re.sub(r"\n{3,}", "\n", text) text = re.sub(r"\n{3,}", "\n", text)
text = re.sub('\s', ' ', text) text = re.sub('\s', ' ', text)
text = text.replace("\n\n", "") text = text.replace("\n\n", "")
sent_sep_pattern = re.compile('([﹒﹔;﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :; if use_document_segmentation:
result = p(documents=text)
sent_list = [i for i in result["text"].split("\n\t") if i]
else:
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
sent_list = [] sent_list = []
for ele in sent_sep_pattern.split(text): for ele in sent_sep_pattern.split(text):
if sent_sep_pattern.match(ele) and sent_list: if sent_sep_pattern.match(ele) and sent_list:
...@@ -22,11 +30,21 @@ class ChineseTextSplitter(CharacterTextSplitter): ...@@ -22,11 +30,21 @@ class ChineseTextSplitter(CharacterTextSplitter):
sent_list.append(ele) sent_list.append(ele)
return sent_list return sent_list
def split_text(self, text: str) -> List[str]: def split_text(self, text: str, use_document_segmentation: bool = False) -> List[str]:
if self.pdf: if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text) text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text) text = re.sub('\s', " ", text)
text = re.sub("\n\n", "", text) text = re.sub("\n\n", "", text)
if use_document_segmentation:
from modelscope.pipelines import pipeline
p = pipeline(
task="document-segmentation",
model='damo/nlp_bert_document-segmentation_chinese-base',
device="cpu")
result = p(documents=text)
sent_list = [i for i in result["text"].split("\n\t") if i]
return sent_list
else:
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符 text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号 text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号 text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
...@@ -47,12 +65,11 @@ class ChineseTextSplitter(CharacterTextSplitter): ...@@ -47,12 +65,11 @@ class ChineseTextSplitter(CharacterTextSplitter):
if len(ele_ele2) > SENTENCE_SIZE: if len(ele_ele2) > SENTENCE_SIZE:
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2) ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
ele2_id = ele2_ls.index(ele_ele2) ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[ele2_id + 1:] ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
ele2_id + 1:]
ele_id = ele1_ls.index(ele_ele1) ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:] ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
id = ls.index(ele) id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id+1:] ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
return ls return ls
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论