Unverified 提交 4295f606 作者: liunux4odoo 提交者: GitHub

添加streamlit ui (#480)

* update QR Code

* Add files via upload

* Update README.md

* add streamlit ui including all functions of webui

---------

Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com>
上级 3324c12d
......@@ -221,6 +221,6 @@ Web UI 可以实现如下功能:
- [x] VUE 前端
## 项目交流群
![二维码](img/qqr_code_1.jpg)
![二维码](img/qr_code_23.jpg)
🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
import streamlit as st
# from st_btn_select import st_btn_select
import tempfile
###### 从webui借用的代码 #####
###### 做了少量修改 #####
import os
import shutil
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
import nltk
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
import models.shared as shared
from models.loader.args import parser
from models.loader import LoaderCheckPoint
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
def get_vs_list():
lst_default = ["新建知识库"]
if not os.path.exists(VS_ROOT_PATH):
return lst_default
lst = os.listdir(VS_ROOT_PATH)
if not lst:
return lst_default
lst.sort()
return lst_default + lst
embedding_model_dict_list = list(embedding_model_dict.keys())
llm_model_dict_list = list(llm_model_dict.keys())
# flag_csv_logger = gr.CSVLogger()
def get_answer(query, vs_path, history, mode, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent: bool = True,
chunk_size=CHUNK_SIZE, streaming: bool = STREAMING,):
if mode == "Bing搜索问答":
for resp, history in local_doc_qa.get_search_result_based_answer(
query=query, chat_history=history, streaming=streaming):
source = "\n\n"
source += "".join(
[f"""<details> <summary>出处 [{i + 1}] <a href="{doc.metadata["source"]}" target="_blank">{doc.metadata["source"]}</a> </summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history[-1][-1] += source
yield history, ""
elif mode == "知识库问答" and vs_path is not None and os.path.exists(vs_path):
for resp, history in local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history, streaming=streaming):
source = "\n\n"
source += "".join(
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history[-1][-1] += source
yield history, ""
elif mode == "知识库测试":
if os.path.exists(vs_path):
resp, prompt = local_doc_qa.get_knowledge_based_conent_test(query=query, vs_path=vs_path,
score_threshold=score_threshold,
vector_search_top_k=vector_search_top_k,
chunk_conent=chunk_conent,
chunk_size=chunk_size)
if not resp["source_documents"]:
yield history + [[query,
"根据您的设定,没有匹配到任何内容,请确认您设置的知识相关度 Score 阈值是否过小或其他参数是否正确。"]], ""
else:
source = "\n".join(
[
f"""<details open> <summary>【知识相关度 Score】:{doc.metadata["score"]} - 【出处{i + 1}】: {os.path.split(doc.metadata["source"])[-1]} </summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history.append([query, "以下内容为知识库中满足设置条件的匹配结果:\n\n" + source])
yield history, ""
else:
yield history + [[query,
"请选择知识库后进行测试,当前未选择知识库。"]], ""
else:
for answer_result in local_doc_qa.llm.generatorAnswer(prompt=query, history=history,
streaming=streaming):
resp = answer_result.llm_output["answer"]
history = answer_result.history
history[-1][-1] = resp + (
"\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "")
yield history, ""
logger.info(f"flagging: username={FLAG_USER_NAME},query={query},vs_path={vs_path},mode={mode},history={history}")
# flag_csv_logger.flag([query, vs_path, history, mode], username=FLAG_USER_NAME)
def init_model(llm_model: str = 'chat-glm-6b', embedding_model: str = 'text2vec'):
local_doc_qa = LocalDocQA()
# 初始化消息
args = parser.parse_args()
args_dict = vars(args)
args_dict.update(model=llm_model)
shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
llm_model_ins = shared.loaderLLM()
llm_model_ins.set_history_len(LLM_HISTORY_LEN)
try:
local_doc_qa.init_cfg(llm_model=llm_model_ins,
embedding_model=embedding_model)
generator = local_doc_qa.llm.generatorAnswer("你好")
for answer_result in generator:
print(answer_result.llm_output)
reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话"""
logger.info(reply)
except Exception as e:
logger.error(e)
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
if str(e) == "Unknown platform: darwin":
logger.info("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
" https://github.com/imClumsyPanda/langchain-ChatGLM")
else:
logger.info(reply)
return local_doc_qa
# 暂未使用到,先保留
# def reinit_model(llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2, use_lora, top_k, history):
# try:
# llm_model_ins = shared.loaderLLM(llm_model, no_remote_model, use_ptuning_v2)
# llm_model_ins.history_len = llm_history_len
# local_doc_qa.init_cfg(llm_model=llm_model_ins,
# embedding_model=embedding_model,
# top_k=top_k)
# model_status = """模型已成功重新加载,可以开始对话,或从右侧选择模式后开始对话"""
# logger.info(model_status)
# except Exception as e:
# logger.error(e)
# model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
# logger.info(model_status)
# return history + [[None, model_status]]
def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation):
vs_path = os.path.join(VS_ROOT_PATH, vs_id)
filelist = []
if not os.path.exists(os.path.join(UPLOAD_ROOT_PATH, vs_id)):
os.makedirs(os.path.join(UPLOAD_ROOT_PATH, vs_id))
if local_doc_qa.llm and local_doc_qa.embeddings:
if isinstance(files, list):
for file in files:
filename = os.path.split(file.name)[-1]
shutil.move(file.name, os.path.join(
UPLOAD_ROOT_PATH, vs_id, filename))
filelist.append(os.path.join(
UPLOAD_ROOT_PATH, vs_id, filename))
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(
filelist, vs_path, sentence_size)
else:
vs_path, loaded_files = local_doc_qa.one_knowledge_add(vs_path, files, one_conent, one_content_segmentation,
sentence_size)
if len(loaded_files):
file_status = f"已添加 {'、'.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
logger.info(file_status)
return vs_path, None, history + [[None, file_status]]
knowledge_base_test_mode_info = ("【注意】\n\n"
"1. 您已进入知识库测试模式,您输入的任何对话内容都将用于进行知识库查询,"
"并仅输出知识库匹配出的内容及相似度分值和及输入的文本源路径,查询的内容并不会进入模型查询。\n\n"
"2. 知识相关度 Score 经测试,建议设置为 500 或更低,具体设置情况请结合实际使用调整。"
"""3. 使用"添加单条数据"添加文本至知识库时,内容如未分段,则内容越多越会稀释各查询内容与之关联的score阈值。\n\n"""
"4. 单条内容长度建议设置在100-150左右。\n\n"
"5. 本界面用于知识入库及知识匹配相关参数设定,但当前版本中,"
"本界面中修改的参数并不会直接修改对话界面中参数,仍需前往`configs/model_config.py`修改后生效。"
"相关参数将在后续版本中支持本界面直接修改。")
webui_title = """
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
"""
###### #####
###### todo #####
# 1. streamlit运行方式与一般web服务器不同,使用模块是无法实现单例模式的,所以shared和local_doc_qa都需要进行全局化处理。
# 目前已经实现了local_doc_qa的全局化,后面要考虑shared。
# 2. 当前local_doc_qa是一个全局变量,一方面:任何一个session对其做出修改,都会影响所有session的对话;另一方面,如何处理所有session的请求竞争也是问题。
# 这个暂时无法避免,在配置普通的机器上暂时也无需考虑。
# 3. 目前只包含了get_answer对应的参数,以后可以添加其他参数,如temperature。
###### #####
###### 配置项 #####
class ST_CONFIG:
user_bg_color = '#77ff77'
user_icon = 'https://tse2-mm.cn.bing.net/th/id/OIP-C.LTTKrxNWDr_k74wz6jKqBgHaHa?w=203&h=203&c=7&r=0&o=5&pid=1.7'
robot_bg_color = '#ccccee'
robot_icon = 'https://ts1.cn.mm.bing.net/th/id/R-C.5302e2cc6f5c7c4933ebb3394e0c41bc?rik=z4u%2b7efba5Mgxw&riu=http%3a%2f%2fcomic-cons.xyz%2fwp-content%2fuploads%2fStar-Wars-avatar-icon-C3PO.png&ehk=kBBvCvpJMHPVpdfpw1GaH%2brbOaIoHjY5Ua9PKcIs%2bAc%3d&risl=&pid=ImgRaw&r=0'
default_mode = '知识库问答'
defalut_kb = ''
###### #####
class MsgType:
'''
目前仅支持文本类型的输入输出,为以后多模态模型预留图像、视频、音频支持。
'''
TEXT = 1
IMAGE = 2
VIDEO = 3
AUDIO = 4
class TempFile:
'''
为保持与get_vector_store的兼容性,需要将streamlit上传文件转化为其可以接受的方式
'''
def __init__(self, path):
self.name = path
def init_session():
st.session_state.setdefault('history', [])
# def get_query_params():
# '''
# 可以用url参数传递配置参数:llm_model, embedding_model, kb, mode。
# 该参数将覆盖model_config中的配置。处于安全考虑,目前只支持kb和mode
# 方便将固定的配置分享给特定的人。
# '''
# params = st.experimental_get_query_params()
# return {k: v[0] for k, v in params.items() if v}
def robot_say(msg, kb=''):
st.session_state['history'].append(
{'is_user': False, 'type': MsgType.TEXT, 'content': msg, 'kb': kb})
def user_say(msg):
st.session_state['history'].append(
{'is_user': True, 'type': MsgType.TEXT, 'content': msg})
def format_md(msg, is_user=False, bg_color='', margin='10%'):
'''
将文本消息格式化为markdown文本
'''
if is_user:
bg_color = bg_color or ST_CONFIG.user_bg_color
text = f'''
<div style="background:{bg_color};
margin-left:{margin};
word-break:break-all;
float:right;
padding:2%;
border-radius:2%;">
{msg}
</div>
'''
else:
bg_color = bg_color or ST_CONFIG.robot_bg_color
text = f'''
<div style="background:{bg_color};
margin-right:{margin};
word-break:break-all;
padding:2%;
border-radius:2%;">
{msg}
</div>
'''
return text
def message(msg,
is_user=False,
msg_type=MsgType.TEXT,
icon='',
bg_color='',
margin='10%',
kb='',
):
'''
渲染单条消息。目前仅支持文本
'''
cols = st.columns([1, 10, 1])
empty = cols[1].empty()
if is_user:
icon = icon or ST_CONFIG.user_icon
bg_color = bg_color or ST_CONFIG.user_bg_color
cols[2].image(icon, width=40)
if msg_type == MsgType.TEXT:
text = format_md(msg, is_user, bg_color, margin)
empty.markdown(text, unsafe_allow_html=True)
else:
raise RuntimeError('only support text message now.')
else:
icon = icon or ST_CONFIG.robot_icon
bg_color = bg_color or ST_CONFIG.robot_bg_color
cols[0].image(icon, width=40)
if kb:
cols[0].write(f'({kb})')
if msg_type == MsgType.TEXT:
text = format_md(msg, is_user, bg_color, margin)
empty.markdown(text, unsafe_allow_html=True)
else:
raise RuntimeError('only support text message now.')
return empty
def output_messages(
user_bg_color='',
robot_bg_color='',
user_icon='',
robot_icon='',
):
with chat_box.container():
last_response = None
for msg in st.session_state['history']:
bg_color = user_bg_color if msg['is_user'] else robot_bg_color
icon = user_icon if msg['is_user'] else robot_icon
empty = message(msg['content'],
is_user=msg['is_user'],
icon=icon,
msg_type=msg['type'],
bg_color=bg_color,
kb=msg.get('kb', '')
)
if not msg['is_user']:
last_response = empty
return last_response
@st.cache_resource(show_spinner=False, max_entries=1)
def load_model(llm_model: str, embedding_model: str):
'''
对应init_model,利用streamlit cache避免模型重复加载
'''
local_doc_qa = init_model(llm_model, embedding_model)
robot_say('模型已成功加载,可以开始对话,或从左侧选择模式后开始对话。\n请尽量不要刷新页面,以免模型出错或重复加载。')
return local_doc_qa
# @st.cache_data
def answer(query, vs_path='', history=[], mode='', score_threshold=0,
vector_search_top_k=5, chunk_conent=True, chunk_size=100, qa=None
):
'''
对应get_answer,--利用streamlit cache缓存相同问题的答案--
'''
return get_answer(query, vs_path, history, mode, score_threshold,
vector_search_top_k, chunk_conent, chunk_size)
def load_vector_store(
vs_id,
files,
sentence_size=100,
history=[],
one_conent=None,
one_content_segmentation=None,
):
return get_vector_store(
local_doc_qa,
vs_id,
files,
sentence_size,
history,
one_conent,
one_content_segmentation,
)
# main ui
st.set_page_config(webui_title, layout='wide')
init_session()
# params = get_query_params()
# llm_model = params.get('llm_model', LLM_MODEL)
# embedding_model = params.get('embedding_model', EMBEDDING_MODEL)
with st.spinner(f'正在加载模型({LLM_MODEL} + {EMBEDDING_MODEL}),请耐心等候...'):
local_doc_qa = load_model(LLM_MODEL, EMBEDDING_MODEL)
def use_kb_mode(m):
return m in ['知识库问答', '知识库测试']
# sidebar
modes = ['LLM 对话', '知识库问答', 'Bing搜索问答', '知识库测试']
with st.sidebar:
def on_mode_change():
m = st.session_state.mode
robot_say(f'已切换到"{m}"模式')
if m == '知识库测试':
robot_say(knowledge_base_test_mode_info)
index = 0
try:
index = modes.index(ST_CONFIG.default_mode)
except:
pass
mode = st.selectbox('对话模式', modes, index,
on_change=on_mode_change, key='mode')
with st.expander('模型配置', '知识' not in mode):
with st.form('model_config'):
index = 0
try:
index = llm_model_dict_list.index(LLM_MODEL)
except:
pass
llm_model = st.selectbox('LLM模型', llm_model_dict_list, index)
no_remote_model = st.checkbox('加载本地模型', False)
use_ptuning_v2 = st.checkbox('使用p-tuning-v2微调过的模型', False)
use_lora = st.checkbox('使用lora微调的权重', False)
try:
index = embedding_model_dict_list.index(EMBEDDING_MODEL)
except:
pass
embedding_model = st.selectbox(
'Embedding模型', embedding_model_dict_list, index)
btn_load_model = st.form_submit_button('重新加载模型')
if btn_load_model:
local_doc_qa = load_model(llm_model, embedding_model)
if mode in ['知识库问答', '知识库测试']:
vs_list = get_vs_list()
vs_list.remove('新建知识库')
def on_new_kb():
name = st.session_state.kb_name
if name in vs_list:
st.error(f'名为“{name}”的知识库已存在。')
else:
vs_list.append(name)
st.session_state.vs_path = name
def on_vs_change():
robot_say(f'已加载知识库: {st.session_state.vs_path}')
with st.expander('知识库配置', True):
cols = st.columns([12, 10])
kb_name = cols[0].text_input(
'新知识库名称', placeholder='新知识库名称', label_visibility='collapsed')
cols[1].button('新建知识库', on_click=on_new_kb)
vs_path = st.selectbox(
'选择知识库', vs_list, on_change=on_vs_change, key='vs_path')
st.text('')
score_threshold = st.slider(
'知识相关度阈值', 0, 1000, VECTOR_SEARCH_SCORE_THRESHOLD)
top_k = st.slider('向量匹配数量', 1, 20, VECTOR_SEARCH_TOP_K)
history_len = st.slider(
'LLM对话轮数', 1, 50, LLM_HISTORY_LEN) # 也许要跟知识库分开设置
local_doc_qa.llm.set_history_len(history_len)
chunk_conent = st.checkbox('启用上下文关联', False)
st.text('')
# chunk_conent = st.checkbox('分割文本', True) # 知识库文本分割入库
chunk_size = st.slider('上下文关联长度', 1, 1000, CHUNK_SIZE)
sentence_size = st.slider('文本入库分句长度限制', 1, 1000, SENTENCE_SIZE)
files = st.file_uploader('上传知识文件',
['docx', 'txt', 'md', 'csv', 'xlsx', 'pdf'],
accept_multiple_files=True)
if st.button('添加文件到知识库'):
temp_dir = tempfile.mkdtemp()
file_list = []
for f in files:
file = os.path.join(temp_dir, f.name)
with open(file, 'wb') as fp:
fp.write(f.getvalue())
file_list.append(TempFile(file))
_, _, history = load_vector_store(
vs_path, file_list, sentence_size, [], None, None)
st.session_state.files = []
# main body
chat_box = st.empty()
with st.form('my_form', clear_on_submit=True):
cols = st.columns([8, 1])
question = cols[0].text_input(
'temp', key='input_question', label_visibility='collapsed')
def on_send():
q = st.session_state.input_question
if q:
user_say(q)
if mode == 'LLM 对话':
robot_say('正在思考...')
last_response = output_messages()
for history, _ in answer(q,
history=[],
mode=mode):
last_response.markdown(
format_md(history[-1][-1], False),
unsafe_allow_html=True
)
elif use_kb_mode(mode):
robot_say('正在思考...', vs_path)
last_response = output_messages()
for history, _ in answer(q,
vs_path=os.path.join(
VS_ROOT_PATH, vs_path),
history=[],
mode=mode,
score_threshold=score_threshold,
vector_search_top_k=top_k,
chunk_conent=chunk_conent,
chunk_size=chunk_size):
last_response.markdown(
format_md(history[-1][-1], False, 'ligreen'),
unsafe_allow_html=True
)
else:
robot_say('正在思考...')
last_response = output_messages()
st.session_state['history'][-1]['content'] = history[-1][-1]
submit = cols[1].form_submit_button('发送', on_click=on_send)
output_messages()
# st.write(st.session_state['history'])
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论