提交 5c349791 作者: imClumsyPanda

update webui.py

上级 1be430be
...@@ -36,12 +36,10 @@ def get_answer(query, vs_path, history): ...@@ -36,12 +36,10 @@ def get_answer(query, vs_path, history):
return history, history return history, history
def get_model_status(history): def update_status(history, status):
return history + [[None, "模型已完成加载,请选择要加载的文档"]] history = history + [[None, status]]
print(status)
return history
def get_file_status(history):
return history + [[None, "文档已完成加载,请开始提问"]]
def init_model(): def init_model():
...@@ -53,22 +51,28 @@ def init_model(): ...@@ -53,22 +51,28 @@ def init_model():
def reinit_model(llm_model, embedding_model, llm_history_len, top_k): def reinit_model(llm_model, embedding_model, llm_history_len, top_k):
try:
local_doc_qa.init_cfg(llm_model=llm_model, local_doc_qa.init_cfg(llm_model=llm_model,
embedding_model=embedding_model, embedding_model=embedding_model,
llm_history_len=llm_history_len, llm_history_len=llm_history_len,
top_k=top_k), top_k=top_k)
return """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
except:
return """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
def get_vector_store(filepath): def get_vector_store(filepath):
local_doc_qa.init_knowledge_vector_store("content/"+filepath) vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath])
if vs_path:
file_status = "文件已成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
print(file_status)
return vs_path, file_status
model_status = gr.State() block_css = """.importantButton {
history = gr.State([])
vs_path = gr.State()
model_status = init_model()
with gr.Blocks(css="""
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important; border: none !important;
} }
...@@ -76,24 +80,31 @@ with gr.Blocks(css=""" ...@@ -76,24 +80,31 @@ with gr.Blocks(css="""
.importantButton:hover { .importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important; border: none !important;
} }"""
""") as demo: webui_title = """
gr.Markdown(
f"""
# 🎉langchain-ChatGLM WebUI🎉 # 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
""") """
with gr.Row():
with gr.Column(scale=2): init_message = """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示 1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示 2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示
3. 输入要提交的问题后,点击回车提交 """], [None, str(model_status)]], 3. 输入要提交的问题后,点击回车提交 """
model_status = init_model()
with gr.Blocks(css=block_css) as demo:
vs_path, history, file_status, model_status = gr.State(""), gr.State([]), gr.State(""), gr.State(model_status)
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
elem_id="chat-box", elem_id="chat-box",
show_label=False).style(height=600) show_label=False).style(height=750)
query = gr.Textbox(show_label=False, query = gr.Textbox(show_label=False,
placeholder="请提问", placeholder="请提问",
lines=1, lines=1,
...@@ -103,7 +114,7 @@ with gr.Blocks(css=""" ...@@ -103,7 +114,7 @@ with gr.Blocks(css="""
with gr.Column(scale=1): with gr.Column(scale=1):
llm_model = gr.Radio(llm_model_dict_list, llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型", label="LLM 模型",
value="chatglm-6b", value=LLM_MODEL,
interactive=True) interactive=True)
llm_history_len = gr.Slider(0, llm_history_len = gr.Slider(0,
10, 10,
...@@ -113,7 +124,7 @@ with gr.Blocks(css=""" ...@@ -113,7 +124,7 @@ with gr.Blocks(css="""
interactive=True) interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list, embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型", label="Embedding 模型",
value="text2vec", value=EMBEDDING_MODEL,
interactive=True) interactive=True)
top_k = gr.Slider(1, top_k = gr.Slider(1,
20, 20,
...@@ -133,34 +144,27 @@ with gr.Blocks(css=""" ...@@ -133,34 +144,27 @@ with gr.Blocks(css="""
file = gr.File(label="content file", file = gr.File(label="content file",
file_types=['.txt', '.md', '.docx', '.pdf'] file_types=['.txt', '.md', '.docx', '.pdf']
) # .style(height=100) ) # .style(height=100)
load_button = gr.Button("重新加载文件") load_file_button = gr.Button("重新加载文件")
load_model_button.click(reinit_model, load_model_button.click(reinit_model,
show_progress=True, show_progress=True,
api_name="init_cfg", inputs=[llm_model, embedding_model, llm_history_len, top_k],
inputs=[llm_model, embedding_model, llm_history_len, top_k] outputs=model_status
).then( ).then(update_status, [chatbot, model_status], chatbot)
get_model_status, chatbot, chatbot
)
# 将上传的文件保存到content文件夹下,并更新下拉框 # 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(upload_file, file.upload(upload_file,
inputs=file, inputs=file,
outputs=selectFile) outputs=selectFile)
load_button.click(get_vector_store, load_file_button.click(get_vector_store,
show_progress=True, show_progress=True,
api_name="init_knowledge_vector_store",
inputs=selectFile, inputs=selectFile,
outputs=vs_path outputs=[vs_path, file_status],
)#.then( ).then(
# get_file_status, update_status, [chatbot, file_status], chatbot
# chatbot, )
# chatbot, query.submit(get_answer,
# show_progress=True, [query, vs_path, chatbot],
# ) [chatbot, history],
# query.submit(get_answer, )
# [query, vs_path, chatbot],
# [chatbot, history],
# api_name="get_knowledge_based_answer"
# )
demo.queue(concurrency_count=3).launch( demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False) server_name='0.0.0.0', share=False, inbrowser=False)
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论