Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
J
jinchat-server
概览
概览
详情
活动
周期分析
版本库
存储库
文件
提交
分支
标签
贡献者
分支图
比较
统计图
问题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
aigc-pioneer
jinchat-server
Commits
7863e0fe
提交
7863e0fe
authored
6月 12, 2023
作者:
imClumsyPanda
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
updata MyFAISS
上级
27a9bf24
隐藏空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
17 行增加
和
30 行删除
+17
-30
local_doc_qa.py
chains/local_doc_qa.py
+1
-3
MyFAISS.py
vectorstores/MyFAISS.py
+16
-27
没有找到文件。
chains/local_doc_qa.py
浏览文件 @
7863e0fe
...
...
@@ -4,9 +4,7 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader, CSVLo
from
configs.model_config
import
*
import
datetime
from
textsplitter
import
ChineseTextSplitter
from
typing
import
List
,
Tuple
,
Dict
from
langchain.docstore.document
import
Document
import
numpy
as
np
from
typing
import
List
from
utils
import
torch_gc
from
tqdm
import
tqdm
from
pypinyin
import
lazy_pinyin
...
...
vectorstores/MyFAISS.py
浏览文件 @
7863e0fe
...
...
@@ -22,27 +22,6 @@ class MyFAISS(FAISS, VectorStore):
index_to_docstore_id
=
index_to_docstore_id
,
normalize_L2
=
normalize_L2
)
# def similarity_search_with_score_by_vector(
# self, embedding: List[float], k: int = 4
# ) -> List[Tuple[Document, float]]:
# faiss = dependable_faiss_import()
# vector = np.array([embedding], dtype=np.float32)
# if self._normalize_L2:
# faiss.normalize_L2(vector)
# scores, indices = self.index.search(vector, k)
# docs = []
# for j, i in enumerate(indices[0]):
# if i == -1:
# # This happens when not enough docs are returned.
# continue
# _id = self.index_to_docstore_id[i]
# doc = self.docstore.search(_id)
# if not isinstance(doc, Document):
# raise ValueError(f"Could not find document for id {_id}, got {doc}")
#
# docs.append((doc, scores[0][j]))
# return docs
def
seperate_list
(
self
,
ls
:
List
[
int
])
->
List
[
List
[
int
]]:
# TODO: 增加是否属于同一文档的判断
lists
=
[]
...
...
@@ -59,7 +38,11 @@ class MyFAISS(FAISS, VectorStore):
def
similarity_search_with_score_by_vector
(
self
,
embedding
:
List
[
float
],
k
:
int
=
4
)
->
List
[
Document
]:
scores
,
indices
=
self
.
index
.
search
(
np
.
array
([
embedding
],
dtype
=
np
.
float32
),
k
)
faiss
=
dependable_faiss_import
()
vector
=
np
.
array
([
embedding
],
dtype
=
np
.
float32
)
if
self
.
_normalize_L2
:
faiss
.
normalize_L2
(
vector
)
scores
,
indices
=
self
.
index
.
search
(
vector
,
k
)
docs
=
[]
id_set
=
set
()
store_len
=
len
(
self
.
index_to_docstore_id
)
...
...
@@ -69,7 +52,7 @@ class MyFAISS(FAISS, VectorStore):
continue
_id
=
self
.
index_to_docstore_id
[
i
]
doc
=
self
.
docstore
.
search
(
_id
)
if
(
not
self
.
chunk_conent
)
or
(
"
add_context"
in
doc
.
metadata
and
not
doc
.
metadata
[
"add_context
"
]):
if
(
not
self
.
chunk_conent
)
or
(
"
context_expand"
in
doc
.
metadata
and
not
doc
.
metadata
[
"context_expand
"
]):
if
not
isinstance
(
doc
,
Document
):
raise
ValueError
(
f
"Could not find document for id {_id}, got {doc}"
)
doc
.
metadata
[
"score"
]
=
int
(
scores
[
0
][
j
])
...
...
@@ -79,11 +62,17 @@ class MyFAISS(FAISS, VectorStore):
docs_len
=
len
(
doc
.
page_content
)
for
k
in
range
(
1
,
max
(
i
,
store_len
-
i
)):
break_flag
=
False
for
l
in
[
i
+
k
,
i
-
k
]:
if
0
<=
l
<
len
(
self
.
index_to_docstore_id
):
if
"context_expand_method"
in
doc
.
metadata
and
doc
.
metadata
[
"context_expand_method"
]
==
"forward"
:
expand_range
=
[
i
+
k
]
elif
"context_expand_method"
in
doc
.
metadata
and
doc
.
metadata
[
"context_expand_method"
]
==
"backward"
:
expand_range
=
[
i
-
k
]
else
:
expand_range
=
[
i
+
k
,
i
-
k
]
for
l
in
expand_range
:
if
l
not
in
id_set
and
0
<=
l
<
len
(
self
.
index_to_docstore_id
):
_id0
=
self
.
index_to_docstore_id
[
l
]
doc0
=
self
.
docstore
.
search
(
_id0
)
if
docs_len
+
len
(
doc0
.
page_content
)
>
self
.
chunk_size
:
if
docs_len
+
len
(
doc0
.
page_content
)
>
self
.
chunk_size
or
doc0
.
metadata
[
"source"
]
!=
doc
.
metadata
[
"source"
]
:
break_flag
=
True
break
elif
doc0
.
metadata
[
"source"
]
==
doc
.
metadata
[
"source"
]:
...
...
@@ -91,7 +80,7 @@ class MyFAISS(FAISS, VectorStore):
id_set
.
add
(
l
)
if
break_flag
:
break
if
(
not
self
.
chunk_conent
)
or
(
"add_context"
in
doc
.
metadata
and
doc
.
metadata
[
"add_context"
]
==
False
):
if
(
not
self
.
chunk_conent
)
or
(
"add_context"
in
doc
.
metadata
and
not
doc
.
metadata
[
"add_context"
]
):
return
docs
if
len
(
id_set
)
==
0
and
self
.
score_threshold
>
0
:
return
[]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论