提交 88175c2e 作者: imClumsyPanda

Merge branch 'master' into dev

......@@ -193,6 +193,6 @@ Web UI 可以实现如下功能:
- [ ] 实现调用 API 的 Web UI Demo
## 项目交流群
![二维码](img/qr_code_15.jpg)
![二维码](img/qr_code_16.jpg)
🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
......@@ -11,7 +11,7 @@ DEVICE_ID = "0" if torch.cuda.is_available() else None
DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
def auto_configure_device_map(num_gpus: int, use_lora: bool) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
......@@ -19,14 +19,21 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: PEFT加载lora模型出现的层命名不同
if LLM_LORA_PATH and use_lora:
layer_prefix = 'base_model.model.transformer'
else:
layer_prefix = 'transformer'
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0, 'lm_head': 0}
device_map = {f'{layer_prefix}.word_embeddings': 0,
f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0,
f'base_model.model.lm_head': 0, }
used = 2
gpu_target = 0
......@@ -35,7 +42,7 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
device_map[f'{layer_prefix}.layers.{i}'] = gpu_target
used += 1
return device_map
......@@ -141,16 +148,16 @@ class ChatGLM(LLM):
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True,
config=model_config, **kwargs)
# model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True,
# config=model_config, **kwargs)
if LLM_LORA_PATH and use_lora:
from peft import PeftModel
model = PeftModel.from_pretrained(model, LLM_LORA_PATH)
model = PeftModel.from_pretrained(self.model, LLM_LORA_PATH)
# 可传入device_map自定义每张卡的部署情况
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
device_map = auto_configure_device_map(num_gpus, use_lora)
self.model = dispatch_model(model.half(), device_map=device_map)
self.model = dispatch_model(self.model.half(), device_map=device_map)
else:
self.model = self.model.float().to(llm_device)
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论