Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
J
jinchat-server
概览
概览
详情
活动
周期分析
版本库
存储库
文件
提交
分支
标签
贡献者
分支图
比较
统计图
问题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
aigc-pioneer
jinchat-server
Commits
88ab9a1d
提交
88ab9a1d
authored
4月 25, 2023
作者:
imClumsyPanda
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update webui.py and local_doc_qa.py
上级
daafe8d5
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
59 行增加
和
29 行删除
+59
-29
local_doc_qa.py
chains/local_doc_qa.py
+32
-11
chatglm_llm.py
models/chatglm_llm.py
+5
-5
webui.py
webui.py
+22
-13
没有找到文件。
chains/local_doc_qa.py
浏览文件 @
88ab9a1d
from
langchain.chains
import
RetrievalQA
from
langchain.prompts
import
PromptTemplate
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from
chains.lib.embeddings
import
MyEmbeddings
# from langchain.vectorstores import FAISS
from
chains.lib.vectorstores
import
FAISSVS
from
langchain.embeddings.huggingface
import
HuggingFaceEmbeddings
from
langchain.vectorstores
import
FAISS
from
langchain.vectorstores.base
import
VectorStoreRetriever
from
langchain.document_loaders
import
UnstructuredFileLoader
from
models.chatglm_llm
import
ChatGLM
import
sentence_transformers
...
...
@@ -12,6 +11,7 @@ from configs.model_config import *
import
datetime
from
typing
import
List
from
textsplitter
import
ChineseTextSplitter
from
langchain.docstore.document
import
Document
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K
=
6
...
...
@@ -21,7 +21,10 @@ LLM_HISTORY_LEN = 3
def
load_file
(
filepath
):
if
filepath
.
lower
()
.
endswith
(
".pdf"
):
if
filepath
.
lower
()
.
endswith
(
".md"
):
loader
=
UnstructuredFileLoader
(
filepath
,
mode
=
"elements"
)
docs
=
loader
.
load
()
elif
filepath
.
lower
()
.
endswith
(
".pdf"
):
loader
=
UnstructuredFileLoader
(
filepath
)
textsplitter
=
ChineseTextSplitter
(
pdf
=
True
)
docs
=
loader
.
load_and_split
(
textsplitter
)
...
...
@@ -32,6 +35,22 @@ def load_file(filepath):
return
docs
def
get_relevant_documents
(
self
,
query
:
str
)
->
List
[
Document
]:
if
self
.
search_type
==
"similarity"
:
docs
=
self
.
vectorstore
.
_similarity_search_with_relevance_scores
(
query
,
**
self
.
search_kwargs
)
for
doc
in
docs
:
doc
[
0
]
.
metadata
[
"score"
]
=
doc
[
1
]
docs
=
[
doc
[
0
]
for
doc
in
docs
]
elif
self
.
search_type
==
"mmr"
:
docs
=
self
.
vectorstore
.
max_marginal_relevance_search
(
query
,
**
self
.
search_kwargs
)
else
:
raise
ValueError
(
f
"search_type of {self.search_type} not allowed."
)
return
docs
class
LocalDocQA
:
llm
:
object
=
None
embeddings
:
object
=
None
...
...
@@ -52,7 +71,7 @@ class LocalDocQA:
use_ptuning_v2
=
use_ptuning_v2
)
self
.
llm
.
history_len
=
llm_history_len
self
.
embeddings
=
My
Embeddings
(
model_name
=
embedding_model_dict
[
embedding_model
],
self
.
embeddings
=
HuggingFace
Embeddings
(
model_name
=
embedding_model_dict
[
embedding_model
],
model_kwargs
=
{
'device'
:
embedding_device
})
# self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name,
# device=embedding_device)
...
...
@@ -99,12 +118,12 @@ class LocalDocQA:
print
(
f
"{file} 未能成功加载"
)
if
len
(
docs
)
>
0
:
if
vs_path
and
os
.
path
.
isdir
(
vs_path
):
vector_store
=
FAISS
VS
.
load_local
(
vs_path
,
self
.
embeddings
)
vector_store
=
FAISS
.
load_local
(
vs_path
,
self
.
embeddings
)
vector_store
.
add_documents
(
docs
)
else
:
if
not
vs_path
:
vs_path
=
f
"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("
%
Y
%
m
%
d_
%
H
%
M
%
S")}"""
vector_store
=
FAISS
VS
.
from_documents
(
docs
,
self
.
embeddings
)
vector_store
=
FAISS
.
from_documents
(
docs
,
self
.
embeddings
)
vector_store
.
save_local
(
vs_path
)
return
vs_path
,
loaded_files
...
...
@@ -129,10 +148,13 @@ class LocalDocQA:
input_variables
=
[
"context"
,
"question"
]
)
self
.
llm
.
history
=
chat_history
vector_store
=
FAISSVS
.
load_local
(
vs_path
,
self
.
embeddings
)
vector_store
=
FAISS
.
load_local
(
vs_path
,
self
.
embeddings
)
vs_r
=
vector_store
.
as_retriever
(
search_type
=
"mmr"
,
search_kwargs
=
{
"k"
:
self
.
top_k
})
# VectorStoreRetriever.get_relevant_documents = get_relevant_documents
knowledge_chain
=
RetrievalQA
.
from_llm
(
llm
=
self
.
llm
,
retriever
=
v
ector_store
.
as_retriever
(
search_kwargs
=
{
"k"
:
self
.
top_k
})
,
retriever
=
v
s_r
,
prompt
=
prompt
)
knowledge_chain
.
combine_documents_chain
.
document_prompt
=
PromptTemplate
(
...
...
@@ -140,7 +162,6 @@ class LocalDocQA:
)
knowledge_chain
.
return_source_documents
=
True
result
=
knowledge_chain
({
"query"
:
query
})
self
.
llm
.
history
[
-
1
][
0
]
=
query
return
result
,
self
.
llm
.
history
models/chatglm_llm.py
浏览文件 @
88ab9a1d
...
...
@@ -72,16 +72,16 @@ class ChatGLM(LLM):
stream
=
True
)
->
str
:
if
stream
:
self
.
history
=
self
.
history
+
[[
None
,
""
]]
response
,
_
=
self
.
model
.
stream_chat
(
for
response
,
history
in
self
.
model
.
stream_chat
(
self
.
tokenizer
,
prompt
,
history
=
self
.
history
[
-
self
.
history_len
:]
if
self
.
history_len
>
0
else
[],
max_length
=
self
.
max_token
,
temperature
=
self
.
temperature
,
)
torch_gc
()
self
.
history
[
-
1
][
-
1
]
=
response
yield
response
)
:
torch_gc
()
self
.
history
[
-
1
][
-
1
]
=
response
yield
response
else
:
response
,
_
=
self
.
model
.
chat
(
self
.
tokenizer
,
...
...
webui.py
浏览文件 @
88ab9a1d
...
...
@@ -30,19 +30,28 @@ local_doc_qa = LocalDocQA()
def
get_answer
(
query
,
vs_path
,
history
,
mode
):
if
vs_path
and
mode
==
"知识库问答"
:
resp
,
history
=
local_doc_qa
.
get_knowledge_based_answer
(
query
=
query
,
vs_path
=
vs_path
,
chat_history
=
history
)
source
=
""
.
join
([
f
"""<details> <summary>出处 {i + 1}</summary>
{doc.page_content}
<b>所属文件:</b>{doc.metadata["source"]}
</details>"""
for
i
,
doc
in
enumerate
(
resp
[
"source_documents"
])])
history
[
-
1
][
-
1
]
+=
source
if
mode
==
"知识库问答"
:
if
vs_path
:
for
resp
,
history
in
local_doc_qa
.
get_knowledge_based_answer
(
query
=
query
,
vs_path
=
vs_path
,
chat_history
=
history
):
# source = "".join([f"""<details> <summary>出处 {i + 1}</summary>
# {doc.page_content}
#
# <b>所属文件:</b>{doc.metadata["source"]}
# </details>""" for i, doc in enumerate(resp["source_documents"])])
# history[-1][-1] += source
yield
history
,
""
else
:
history
=
history
+
[[
query
,
""
]]
for
resp
in
local_doc_qa
.
llm
.
_call
(
query
):
history
[
-
1
][
-
1
]
=
resp
+
(
"
\n\n
当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。"
if
mode
==
"知识库问答"
else
""
)
yield
history
,
""
else
:
resp
=
local_doc_qa
.
llm
.
_call
(
query
)
history
=
history
+
[[
query
,
resp
+
(
"
\n\n
当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。"
if
mode
==
"知识库问答"
else
""
)]]
return
history
,
""
history
=
history
+
[[
query
,
""
]]
for
resp
in
local_doc_qa
.
llm
.
_call
(
query
):
history
[
-
1
][
-
1
]
=
resp
yield
history
,
""
def
update_status
(
history
,
status
):
...
...
@@ -62,7 +71,7 @@ def init_model():
print
(
e
)
reply
=
"""模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
if
str
(
e
)
==
"Unknown platform: darwin"
:
print
(
"
改
报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
print
(
"
该
报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
" https://github.com/imClumsyPanda/langchain-ChatGLM"
)
else
:
print
(
reply
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论