提交 967ac2ed 作者: imClumsyPanda

merge master

......@@ -23,6 +23,10 @@
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
🐳 Docker镜像:registry.cn-beijing.aliyuncs.com/isafetech/chatmydata:1.0 (感谢 @InkSong🌲 )
💻 运行方式:docker run -d -p 80:7860 --gpus all registry.cn-beijing.aliyuncs.com/isafetech/chatmydata:1.0 
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/imClumsyPanda/langchain-ChatGLM/langchain-ChatGLM)
📓 [ModelWhale 在线运行项目](https://www.heywhale.com/mw/project/643977aa446c45f4592a1e59)
......@@ -60,6 +64,23 @@
本项目中默认选用的 Embedding 模型 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main) 约占用显存 3GB,也可修改为在 CPU 中运行。
## Docker 整合包
🐳 Docker镜像地址:`registry.cn-beijing.aliyuncs.com/isafetech/chatmydata:1.0 `🌲
💻 一行命令运行:
```shell
docker run -d -p 80:7860 --gpus all registry.cn-beijing.aliyuncs.com/isafetech/chatmydata:1.0
```
- 该版本镜像大小`25.2G`,使用[v0.1.16](https://github.com/imClumsyPanda/langchain-ChatGLM/releases/tag/v0.1.16),以`nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04`为基础镜像
- 该版本内置两个`embedding`模型:`m3e-base``text2vec-large-chinese`,内置`fastchat+chatglm-6b`
- 该版本目标为方便一键部署使用,请确保您已经在Linux发行版上安装了NVIDIA驱动程序
- 请注意,您不需要在主机系统上安装CUDA工具包,但需要安装`NVIDIA Driver`以及`NVIDIA Container Toolkit`,请参考[安装指南](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
- 首次拉取和启动均需要一定时间,首次启动时请参照下图使用`docker logs -f <container id>`查看日志
- 如遇到启动过程卡在`Waiting..`步骤,建议使用`docker exec -it <container id> bash`进入`/logs/`目录查看对应阶段日志
![](img/docker_logs.png)
## Docker 部署
为了能让容器使用主机GPU资源,需要在主机上安装 [NVIDIA Container Toolkit](https://github.com/NVIDIA/nvidia-container-toolkit)。具体安装步骤如下:
```shell
......@@ -230,7 +251,7 @@ Web UI 可以实现如下功能:
- [x] VUE 前端
## 项目交流群
<img src="img/qr_code_36.jpg" alt="二维码" width="300" height="300" />
<img src="img/qr_code_39.jpg" alt="二维码" width="300" height="300" />
🎉 langchain-ChatGLM 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
......@@ -4,7 +4,7 @@ import os
import shutil
from typing import List, Optional
import urllib
import asyncio
import nltk
import pydantic
import uvicorn
......@@ -382,6 +382,7 @@ async def stream_chat(websocket: WebSocket):
for resp, history in local_doc_qa.get_knowledge_based_answer(
query=question, vs_path=vs_path, chat_history=history, streaming=True
):
await asyncio.sleep(0)
await websocket.send_text(resp["result"][last_print_len:])
last_print_len = len(resp["result"])
......
......@@ -257,10 +257,21 @@ class LoaderCheckPoint:
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
encode = ""
if 'chatglm2' in self.model_name:
device_map = {
f"{layer_prefix}.embedding.word_embeddings": 0,
f"{layer_prefix}.rotary_pos_emb": 0,
f"{layer_prefix}.output_layer": 0,
f"{layer_prefix}.encoder.final_layernorm": 0,
f"base_model.model.output_layer": 0
}
encode = ".encoder"
else:
device_map = {f'{layer_prefix}.word_embeddings': 0,
f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0,
f'base_model.model.lm_head': 0, }
used = 2
gpu_target = 0
for i in range(num_trans_layers):
......@@ -268,7 +279,7 @@ class LoaderCheckPoint:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'{layer_prefix}.layers.{i}'] = gpu_target
device_map[f'{layer_prefix}{encode}.layers.{i}'] = gpu_target
used += 1
return device_map
......
......@@ -143,7 +143,7 @@ def init_model(llm_model: str = 'chat-glm-6b', embedding_model: str = 'text2vec'
# return history + [[None, model_status]]
def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation):
def get_vector_store(local_doc_qa, vs_id, files, sentence_size, history, one_conent, one_content_segmentation):
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
filelist = []
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_id, "content")):
......@@ -455,6 +455,8 @@ with st.sidebar:
cols = st.columns([12, 10])
kb_name = cols[0].text_input(
'新知识库名称', placeholder='新知识库名称', label_visibility='collapsed')
if 'kb_name' not in st.session_state:
st.session_state.kb_name = kb_name
cols[1].button('新建知识库', on_click=on_new_kb)
vs_path = st.selectbox(
'选择知识库', vs_list, on_change=on_vs_change, key='vs_path')
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论