Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
J
jinchat-server
概览
概览
详情
活动
周期分析
版本库
存储库
文件
提交
分支
标签
贡献者
分支图
比较
统计图
问题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
aigc-pioneer
jinchat-server
Commits
9c422cc6
提交
9c422cc6
authored
5月 21, 2023
作者:
imClumsyPanda
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update bing_search.py
上级
f986b756
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
49 行增加
和
19 行删除
+49
-19
bing_search.py
agent/bing_search.py
+10
-11
local_doc_qa.py
chains/local_doc_qa.py
+39
-8
没有找到文件。
agent/bing_search.py
浏览文件 @
9c422cc6
#coding=utf8
import
os
from
langchain.utilities
import
BingSearchAPIWrapper
from
configs.model_config
import
BING_SEARCH_URL
,
BING_SUBSCRIPTION_KEY
env_bing_key
=
os
.
environ
.
get
(
"BING_SUBSCRIPTION_KEY"
)
env_bing_url
=
os
.
environ
.
get
(
"BING_SEARCH_URL"
)
def
search
(
text
,
result_len
=
3
):
if
not
(
env_bing_key
and
env_bing_url
):
return
[{
"snippet"
:
"please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV"
,
"title"
:
"env inof not fould"
,
"link"
:
"https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"
}]
search
=
BingSearchAPIWrapper
()
def
bing_search
(
text
,
result_len
=
3
):
if
not
(
BING_SEARCH_URL
and
BING_SUBSCRIPTION_KEY
):
return
[{
"snippet"
:
"please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV"
,
"title"
:
"env inof not fould"
,
"link"
:
"https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"
}]
search
=
BingSearchAPIWrapper
(
bing_subscription_key
=
BING_SUBSCRIPTION_KEY
,
bing_search_url
=
BING_SEARCH_URL
)
return
search
.
results
(
text
,
result_len
)
if
__name__
==
"__main__"
:
r
=
search
(
'python'
)
r
=
bing_search
(
'python'
)
print
(
r
)
chains/local_doc_qa.py
浏览文件 @
9c422cc6
...
...
@@ -4,7 +4,7 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader
from
configs.model_config
import
*
import
datetime
from
textsplitter
import
ChineseTextSplitter
from
typing
import
List
,
Tuple
from
typing
import
List
,
Tuple
,
Dict
from
langchain.docstore.document
import
Document
import
numpy
as
np
from
utils
import
torch_gc
...
...
@@ -18,6 +18,8 @@ from models.base import (BaseAnswer,
from
models.loader.args
import
parser
from
models.loader
import
LoaderCheckPoint
import
models.shared
as
shared
from
agent
import
bing_search
from
langchain.docstore.document
import
Document
def
load_file
(
filepath
,
sentence_size
=
SENTENCE_SIZE
):
...
...
@@ -58,8 +60,9 @@ def write_check_file(filepath, docs):
fout
.
close
()
def
generate_prompt
(
related_docs
:
List
[
str
],
query
:
str
,
prompt_template
=
PROMPT_TEMPLATE
)
->
str
:
def
generate_prompt
(
related_docs
:
List
[
str
],
query
:
str
,
prompt_template
:
str
=
PROMPT_TEMPLATE
,
)
->
str
:
context
=
"
\n
"
.
join
([
doc
.
page_content
for
doc
in
related_docs
])
prompt
=
prompt_template
.
replace
(
"{question}"
,
query
)
.
replace
(
"{context}"
,
context
)
return
prompt
...
...
@@ -137,6 +140,16 @@ def similarity_search_with_score_by_vector(
return
docs
def
search_result2docs
(
search_results
):
docs
=
[]
for
result
in
search_results
:
doc
=
Document
(
page_content
=
result
[
"snippet"
]
if
"snippet"
in
result
.
keys
()
else
""
,
metadata
=
{
"source"
:
result
[
"link"
]
if
"link"
in
result
.
keys
()
else
""
,
"filename"
:
result
[
"title"
]
if
"title"
in
result
.
keys
()
else
""
})
docs
.
append
(
doc
)
return
docs
class
LocalDocQA
:
llm
:
BaseAnswer
=
None
embeddings
:
object
=
None
...
...
@@ -262,7 +275,6 @@ class LocalDocQA:
"source_documents"
:
related_docs_with_score
}
yield
response
,
history
# query 查询内容
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
...
...
@@ -288,6 +300,21 @@ class LocalDocQA:
"source_documents"
:
related_docs_with_score
}
return
response
,
prompt
def
get_search_result_based_answer
(
self
,
query
,
chat_history
=
[],
streaming
:
bool
=
STREAMING
):
results
=
bing_search
(
query
)
result_docs
=
search_result2docs
(
results
)
prompt
=
generate_prompt
(
result_docs
,
query
)
for
answer_result
in
self
.
llm
.
generatorAnswer
(
prompt
=
prompt
,
history
=
chat_history
,
streaming
=
streaming
):
resp
=
answer_result
.
llm_output
[
"answer"
]
history
=
answer_result
.
history
history
[
-
1
][
0
]
=
query
response
=
{
"query"
:
query
,
"result"
:
resp
,
"source_documents"
:
result_docs
}
yield
response
,
history
if
__name__
==
"__main__"
:
# 初始化消息
...
...
@@ -304,13 +331,17 @@ if __name__ == "__main__":
query
=
"本项目使用的embedding模型是什么,消耗多少显存"
vs_path
=
"/media/gpt4-pdf-chatbot-langchain/dev-langchain-ChatGLM/vector_store/test"
last_print_len
=
0
for
resp
,
history
in
local_doc_qa
.
get_knowledge_based_answer
(
query
=
query
,
vs_path
=
vs_path
,
# for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
# vs_path=vs_path,
# chat_history=[],
# streaming=True):
for
resp
,
history
in
local_doc_qa
.
get_search_result_based_answer
(
query
=
query
,
chat_history
=
[],
streaming
=
True
):
logger
.
info
(
resp
[
"result"
][
last_print_len
:],
end
=
""
,
flush
=
True
)
print
(
resp
[
"result"
][
last_print_len
:],
end
=
""
,
flush
=
True
)
last_print_len
=
len
(
resp
[
"result"
])
source_text
=
[
f
"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:
\n\n
{doc.page_content}
\n\n
"""
source_text
=
[
f
"""出处 [{inum + 1}] {doc.metadata['source'] if doc.metadata['source'].startswith("http")
else os.path.split(doc.metadata['source'])[-1]}:
\n\n
{doc.page_content}
\n\n
"""
# f"""相关度:{doc.metadata['score']}\n\n"""
for
inum
,
doc
in
enumerate
(
resp
[
"source_documents"
])]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论