Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
J
jinchat-server
概览
概览
详情
活动
周期分析
版本库
存储库
文件
提交
分支
标签
贡献者
分支图
比较
统计图
问题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
aigc-pioneer
jinchat-server
Commits
9c422cc6
提交
9c422cc6
authored
5月 21, 2023
作者:
imClumsyPanda
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update bing_search.py
上级
f986b756
隐藏空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
52 行增加
和
22 行删除
+52
-22
bing_search.py
agent/bing_search.py
+10
-11
local_doc_qa.py
chains/local_doc_qa.py
+42
-11
没有找到文件。
agent/bing_search.py
浏览文件 @
9c422cc6
#coding=utf8
#coding=utf8
import
os
from
langchain.utilities
import
BingSearchAPIWrapper
from
langchain.utilities
import
BingSearchAPIWrapper
from
configs.model_config
import
BING_SEARCH_URL
,
BING_SUBSCRIPTION_KEY
env_bing_key
=
os
.
environ
.
get
(
"BING_SUBSCRIPTION_KEY"
)
def
bing_search
(
text
,
result_len
=
3
):
env_bing_url
=
os
.
environ
.
get
(
"BING_SEARCH_URL"
)
if
not
(
BING_SEARCH_URL
and
BING_SUBSCRIPTION_KEY
):
return
[{
"snippet"
:
"please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV"
,
"title"
:
"env inof not fould"
,
def
search
(
text
,
result_len
=
3
):
"link"
:
"https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"
}]
if
not
(
env_bing_key
and
env_bing_url
):
search
=
BingSearchAPIWrapper
(
bing_subscription_key
=
BING_SUBSCRIPTION_KEY
,
return
[{
"snippet"
:
"please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV"
,
bing_search_url
=
BING_SEARCH_URL
)
"title"
:
"env inof not fould"
,
"link"
:
"https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"
}]
search
=
BingSearchAPIWrapper
()
return
search
.
results
(
text
,
result_len
)
return
search
.
results
(
text
,
result_len
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
r
=
search
(
'python'
)
r
=
bing_search
(
'python'
)
print
(
r
)
chains/local_doc_qa.py
浏览文件 @
9c422cc6
...
@@ -4,7 +4,7 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader
...
@@ -4,7 +4,7 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader
from
configs.model_config
import
*
from
configs.model_config
import
*
import
datetime
import
datetime
from
textsplitter
import
ChineseTextSplitter
from
textsplitter
import
ChineseTextSplitter
from
typing
import
List
,
Tuple
from
typing
import
List
,
Tuple
,
Dict
from
langchain.docstore.document
import
Document
from
langchain.docstore.document
import
Document
import
numpy
as
np
import
numpy
as
np
from
utils
import
torch_gc
from
utils
import
torch_gc
...
@@ -18,6 +18,8 @@ from models.base import (BaseAnswer,
...
@@ -18,6 +18,8 @@ from models.base import (BaseAnswer,
from
models.loader.args
import
parser
from
models.loader.args
import
parser
from
models.loader
import
LoaderCheckPoint
from
models.loader
import
LoaderCheckPoint
import
models.shared
as
shared
import
models.shared
as
shared
from
agent
import
bing_search
from
langchain.docstore.document
import
Document
def
load_file
(
filepath
,
sentence_size
=
SENTENCE_SIZE
):
def
load_file
(
filepath
,
sentence_size
=
SENTENCE_SIZE
):
...
@@ -58,8 +60,9 @@ def write_check_file(filepath, docs):
...
@@ -58,8 +60,9 @@ def write_check_file(filepath, docs):
fout
.
close
()
fout
.
close
()
def
generate_prompt
(
related_docs
:
List
[
str
],
query
:
str
,
def
generate_prompt
(
related_docs
:
List
[
str
],
prompt_template
=
PROMPT_TEMPLATE
)
->
str
:
query
:
str
,
prompt_template
:
str
=
PROMPT_TEMPLATE
,
)
->
str
:
context
=
"
\n
"
.
join
([
doc
.
page_content
for
doc
in
related_docs
])
context
=
"
\n
"
.
join
([
doc
.
page_content
for
doc
in
related_docs
])
prompt
=
prompt_template
.
replace
(
"{question}"
,
query
)
.
replace
(
"{context}"
,
context
)
prompt
=
prompt_template
.
replace
(
"{question}"
,
query
)
.
replace
(
"{context}"
,
context
)
return
prompt
return
prompt
...
@@ -137,6 +140,16 @@ def similarity_search_with_score_by_vector(
...
@@ -137,6 +140,16 @@ def similarity_search_with_score_by_vector(
return
docs
return
docs
def
search_result2docs
(
search_results
):
docs
=
[]
for
result
in
search_results
:
doc
=
Document
(
page_content
=
result
[
"snippet"
]
if
"snippet"
in
result
.
keys
()
else
""
,
metadata
=
{
"source"
:
result
[
"link"
]
if
"link"
in
result
.
keys
()
else
""
,
"filename"
:
result
[
"title"
]
if
"title"
in
result
.
keys
()
else
""
})
docs
.
append
(
doc
)
return
docs
class
LocalDocQA
:
class
LocalDocQA
:
llm
:
BaseAnswer
=
None
llm
:
BaseAnswer
=
None
embeddings
:
object
=
None
embeddings
:
object
=
None
...
@@ -262,7 +275,6 @@ class LocalDocQA:
...
@@ -262,7 +275,6 @@ class LocalDocQA:
"source_documents"
:
related_docs_with_score
}
"source_documents"
:
related_docs_with_score
}
yield
response
,
history
yield
response
,
history
# query 查询内容
# query 查询内容
# vs_path 知识库路径
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
# chunk_conent 是否启用上下文关联
...
@@ -288,11 +300,26 @@ class LocalDocQA:
...
@@ -288,11 +300,26 @@ class LocalDocQA:
"source_documents"
:
related_docs_with_score
}
"source_documents"
:
related_docs_with_score
}
return
response
,
prompt
return
response
,
prompt
def
get_search_result_based_answer
(
self
,
query
,
chat_history
=
[],
streaming
:
bool
=
STREAMING
):
results
=
bing_search
(
query
)
result_docs
=
search_result2docs
(
results
)
prompt
=
generate_prompt
(
result_docs
,
query
)
for
answer_result
in
self
.
llm
.
generatorAnswer
(
prompt
=
prompt
,
history
=
chat_history
,
streaming
=
streaming
):
resp
=
answer_result
.
llm_output
[
"answer"
]
history
=
answer_result
.
history
history
[
-
1
][
0
]
=
query
response
=
{
"query"
:
query
,
"result"
:
resp
,
"source_documents"
:
result_docs
}
yield
response
,
history
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
# 初始化消息
# 初始化消息
args
=
None
args
=
None
args
=
parser
.
parse_args
(
args
=
[
'--model-dir'
,
'/media/checkpoint/'
,
'--model'
,
'chatglm-6b'
,
'--no-remote-model'
])
args
=
parser
.
parse_args
(
args
=
[
'--model-dir'
,
'/media/checkpoint/'
,
'--model'
,
'chatglm-6b'
,
'--no-remote-model'
])
args_dict
=
vars
(
args
)
args_dict
=
vars
(
args
)
shared
.
loaderCheckPoint
=
LoaderCheckPoint
(
args_dict
)
shared
.
loaderCheckPoint
=
LoaderCheckPoint
(
args_dict
)
...
@@ -304,13 +331,17 @@ if __name__ == "__main__":
...
@@ -304,13 +331,17 @@ if __name__ == "__main__":
query
=
"本项目使用的embedding模型是什么,消耗多少显存"
query
=
"本项目使用的embedding模型是什么,消耗多少显存"
vs_path
=
"/media/gpt4-pdf-chatbot-langchain/dev-langchain-ChatGLM/vector_store/test"
vs_path
=
"/media/gpt4-pdf-chatbot-langchain/dev-langchain-ChatGLM/vector_store/test"
last_print_len
=
0
last_print_len
=
0
for
resp
,
history
in
local_doc_qa
.
get_knowledge_based_answer
(
query
=
query
,
# for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
vs_path
=
vs_path
,
# vs_path=vs_path,
chat_history
=
[],
# chat_history=[],
streaming
=
True
):
# streaming=True):
logger
.
info
(
resp
[
"result"
][
last_print_len
:],
end
=
""
,
flush
=
True
)
for
resp
,
history
in
local_doc_qa
.
get_search_result_based_answer
(
query
=
query
,
chat_history
=
[],
streaming
=
True
):
print
(
resp
[
"result"
][
last_print_len
:],
end
=
""
,
flush
=
True
)
last_print_len
=
len
(
resp
[
"result"
])
last_print_len
=
len
(
resp
[
"result"
])
source_text
=
[
f
"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:
\n\n
{doc.page_content}
\n\n
"""
source_text
=
[
f
"""出处 [{inum + 1}] {doc.metadata['source'] if doc.metadata['source'].startswith("http")
else os.path.split(doc.metadata['source'])[-1]}:
\n\n
{doc.page_content}
\n\n
"""
# f"""相关度:{doc.metadata['score']}\n\n"""
# f"""相关度:{doc.metadata['score']}\n\n"""
for
inum
,
doc
in
for
inum
,
doc
in
enumerate
(
resp
[
"source_documents"
])]
enumerate
(
resp
[
"source_documents"
])]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论