提交 c4ee36b8 作者: glide-the

删除 AnswerResultStream 、generate_with_callback收集器

上级 e7b06a90
......@@ -12,9 +12,7 @@ from tqdm import tqdm
from pypinyin import lazy_pinyin
from loader import UnstructuredPaddleImageLoader, UnstructuredPaddlePDFLoader
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
from models.loader.args import parser
from models.loader import LoaderCheckPoint
import models.shared as shared
......
......@@ -10,142 +10,12 @@ import transformers
from models.loader import LoaderCheckPoint
class ListenerToken:
"""
观测结果
"""
input_ids: torch.LongTensor
_scores: torch.FloatTensor
def __init__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor):
self.input_ids = input_ids
self._scores = _scores
class AnswerResult:
"""
消息实体
"""
history: List[List[str]] = []
llm_output: Optional[dict] = None
listenerToken: ListenerToken = None
class AnswerResultStream:
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, answerResult: AnswerResult):
if self.callback_func is not None:
self.callback_func(answerResult)
class AnswerResultQueueSentinelTokenListenerQueue(transformers.StoppingCriteria):
"""
定义模型stopping_criteria 监听者,在每次响应时将队列数据同步到AnswerResult
实现此监听器的目的是,不同模型的预测输出可能不是矢量信息,hf框架可以自定义transformers.StoppingCriteria入参来接收每次预测的Tensor和损失函数,
通过给 StoppingCriteriaList指定模型生成答案时停止的条件。每个 StoppingCriteria 对象表示一个停止条件
当每轮预测任务开始时,StoppingCriteria都会收到相同的预测结果,最终由下层实现类确认是否结束
输出值可用于 generatorAnswer generate_with_streaming的自定义参数观测,以实现更加精细的控制
"""
listenerQueue: deque = deque(maxlen=1)
def __init__(self):
transformers.StoppingCriteria.__init__(self)
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor, **kwargs) -> bool:
"""
每次响应时将数据添加到响应队列
:param input_ids:
:param _scores:
:param kwargs:
:return:
"""
self.listenerQueue.append(ListenerToken(input_ids=input_ids, _scores=_scores))
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
"""
def __init__(self, func, kwargs={}):
self.mfunc = func
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs
self.stop_now = False
def _callback(val):
"""
模型输出预测结果收集
通过定义generate_with_callback收集器AnswerResultStream,收集模型预测的AnswerResult响应结果,最终由下层实现类确认是否结束
结束条件包含如下
1、模型预测结束、收集器self.q队列收到 self.sentinel标识
2、在处理迭代器队列消息时返回了break跳出迭代器,触发了StopIteration事件
3、模型预测出错
因为当前类是迭代器,所以在for in 中执行了break后 __exit__ 方法会被调用,最终stop_now属性会被更新,然后抛出异常结束预测行为
迭代器收集的行为如下
创建Iteratorize迭代对象,
定义generate_with_callback收集器AnswerResultStream
启动一个线程异步预测结果来调用上游checkpoint的实现方法_generate_answer
_generate_answer通过generate_with_callback定义的收集器,收集上游checkpoint包装的AnswerResult消息体
由于self.q是阻塞模式,每次预测后会被消费后才会执行下次预测
这时generate_with_callback会被阻塞
主线程Iteratorize对象的__next__方法调用获取阻塞消息并消费
1、消息为上游checkpoint包装的AnswerResult消息体,返回下游处理
2、消息为self.sentinel标识,抛出StopIteration异常
主线程Iteratorize对象__exit__收到消息,最终stop_now属性会被更新
异步线程检测stop_now属性被更新,抛出异常结束预测行为
迭代行为结束
:param val:
:return:
"""
if self.stop_now:
raise ValueError
self.q.put(val)
def gen():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except:
traceback.print_exc()
pass
self.q.put(self.sentinel)
self.thread = Thread(target=gen)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
"""
暂无实现
:return:
"""
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
""" break 后会执行 """
self.stop_now = True
class BaseAnswer(ABC):
......@@ -168,22 +38,4 @@ class BaseAnswer(ABC):
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False):
def generate_with_callback(callback=None, **kwargs):
kwargs['generate_with_callback'] = AnswerResultStream(callback_func=callback)
self._generate_answer(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs)
with generate_with_streaming(prompt=prompt, history=history, streaming=streaming) as generator:
for answerResult in generator:
if answerResult.listenerToken:
output = answerResult.listenerToken.input_ids
yield answerResult
@abstractmethod
def _generate_answer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False,
generate_with_callback: AnswerResultStream = None) -> None:
pass
......@@ -5,9 +5,7 @@ from langchain.llms.base import LLM
from typing import Optional, List
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
import transformers
......@@ -43,15 +41,9 @@ class ChatGLM(BaseAnswer, LLM, ABC):
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
pass
def _generate_answer(self, prompt: str,
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False,
generate_with_callback: AnswerResultStream = None) -> None:
# Create the StoppingCriteriaList with the stopping strings
stopping_criteria_list = transformers.StoppingCriteriaList()
# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResult
listenerQueue = AnswerResultQueueSentinelTokenListenerQueue()
stopping_criteria_list.append(listenerQueue)
streaming: bool = False):
if streaming:
history += [[]]
......@@ -60,34 +52,27 @@ class ChatGLM(BaseAnswer, LLM, ABC):
prompt,
history=history[-self.history_len:-1] if self.history_len > 0 else [],
max_length=self.max_token,
temperature=self.temperature,
stopping_criteria=stopping_criteria_list
temperature=self.temperature
)):
# self.checkPoint.clear_torch_cache()
history[-1] = [prompt, stream_resp]
answer_result = AnswerResult()
answer_result.history = history
answer_result.llm_output = {"answer": stream_resp}
if listenerQueue.listenerQueue.__len__() > 0:
answer_result.listenerToken = listenerQueue.listenerQueue.pop()
generate_with_callback(answer_result)
yield answer_result
else:
response, _ = self.checkPoint.model.chat(
self.checkPoint.tokenizer,
prompt,
history=history[-self.history_len:] if self.history_len > 0 else [],
max_length=self.max_token,
temperature=self.temperature,
stopping_criteria=stopping_criteria_list
temperature=self.temperature
)
self.checkPoint.clear_torch_cache()
history += [[prompt, response]]
answer_result = AnswerResult()
answer_result.history = history
answer_result.llm_output = {"answer": response}
if listenerQueue.listenerQueue.__len__() > 0:
answer_result.listenerToken = listenerQueue.listenerQueue.pop()
generate_with_callback(answer_result)
yield answer_result
......@@ -5,9 +5,7 @@ from langchain.llms.base import LLM
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
class FastChatLLM(BaseAnswer, LLM, ABC):
......@@ -40,10 +38,9 @@ class FastChatLLM(BaseAnswer, LLM, ABC):
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
pass
def _generate_answer(self, prompt: str,
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False,
generate_with_callback: AnswerResultStream = None) -> None:
streaming: bool = False):
response = "fastchat 响应结果"
history += [[prompt, response]]
......@@ -51,4 +48,4 @@ class FastChatLLM(BaseAnswer, LLM, ABC):
answer_result.history = history
answer_result.llm_output = {"answer": response}
generate_with_callback(answer_result)
yield answer_result
......@@ -9,9 +9,7 @@ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaL
from typing import Optional, List, Dict, Any
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
class InvalidScoreLogitsProcessor(LogitsProcessor):
......@@ -178,23 +176,15 @@ class LLamaLLM(BaseAnswer, LLM, ABC):
self.history = self.history + [[None, reply]]
return reply
def _generate_answer(self, prompt: str,
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False,
generate_with_callback: AnswerResultStream = None) -> None:
streaming: bool = False):
if history:
self.history = history
# Create the StoppingCriteriaList with the stopping strings
self.stopping_criteria = transformers.StoppingCriteriaList()
# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResult
listenerQueue = AnswerResultQueueSentinelTokenListenerQueue()
self.stopping_criteria.append(listenerQueue)
# TODO 需要实现chat对话模块和注意力模型,目前_call为langchain的LLM拓展的api,默认为无提示词模式,如果需要操作注意力模型,可以参考chat_glm的实现
softprompt = self.generate_softprompt_history_tensors(prompt)
response = self._call(prompt=softprompt, stop=['\n###'])
answer_result = AnswerResult()
answer_result.history = self.history
if listenerQueue.listenerQueue.__len__() > 0:
answer_result.listenerToken = listenerQueue.listenerQueue.pop()
answer_result.llm_output = {"answer": response}
generate_with_callback(answer_result)
yield answer_result
......@@ -3,9 +3,7 @@ from langchain.llms.base import LLM
from typing import Optional, List
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
import torch
......@@ -53,10 +51,9 @@ class MOSSLLM(BaseAnswer, LLM, ABC):
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
pass
def _generate_answer(self, prompt: str,
def generatorAnswer(self, prompt: str,
history: List[List[str]] = [],
streaming: bool = False,
generate_with_callback: AnswerResultStream = None) -> None:
streaming: bool = False):
if len(history) > 0:
history = history[-self.history_len:-1] if self.history_len > 0 else []
prompt_w_history = str(history)
......@@ -86,6 +83,6 @@ class MOSSLLM(BaseAnswer, LLM, ABC):
answer_result.history = history
answer_result.llm_output = {"answer": response}
generate_with_callback(answer_result)
yield answer_result
......@@ -6,9 +6,7 @@ from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
import nltk
from models.base import (BaseAnswer,
AnswerResult,
AnswerResultStream,
AnswerResultQueueSentinelTokenListenerQueue)
AnswerResult)
import models.shared as shared
from models.loader.args import parser
from models.loader import LoaderCheckPoint
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论